clinical negative axilla (ycN0) and metastatic SLN after NAC and received adjuvant radiotherapy to the whole breast or the chest wall, to three axillary levels and the supraclavicular region.

Conflict of Interest: No significant relationships.

P147

Use of indocyanine green (ICG) in detection of axillary sentinel lymph nodes for breast cancer

C. Nikolau1*, 251 Hellenic Airforce Hospital, Athens, Greece

Goals: Axillary sentinel lymph node (SLN) is the first lymph node of breast's lymphatic drainage. According to the latest data, the lymph is divided into two or three sentinel lymph nodes (average 2.4 per patient). SLN biopsy is used to detect local axillary lymphatic cancer spread, avoiding unnecessary axillary lymph node dissection, with a remarkable low morbidity risk. Blue dye and radioisotope (Tc99) are the most widely used tracers. However, because of potential radioactivity consequences a new mapping agent has been proposed.

Methods: Novel mapping agent indocyanine green (ICG) has been recently implemented in our hospital to detect axillary SLN. More specifically, in five months period 19 patients with infiltrated breast carcinoma with no clinical and imaging findings of axillary involvement and no neoadjuvant therapy, enrolled in the study. 3/19 had positive SLN leading to axillary lymph node dissection. This technique does not include radioisotopes. Technically periareolar and near the breast tumor subcutaneous injections of ICG are performed, immediately after induction to anesthesia. An infrared camera system provides visualization of the lymphatic drainage and helps in the detection of the sentinel lymph nodes through fluorescent image in real time.

Results: SLN in our patients were recognized 2 min after the injection and have been successfully removed according to the postoperative histopathological analysis. There were no allergic reactions or other complications during the procedure. Our results are similar with previous studies.

Conclusion(s): ICG could serve as an alternative agent for detection and removal of sentinel lymph nodes in breast cancer, with the same results in terms of accuracy as the classic combination of radioisotope and blue dye, avoiding the side effects of radioisotope and the need of a nuclear medicine department establishment.

Conflict of Interest: No significant relationships.

P148

Conservatives mastectomies and immediate direct to implant breast reconstruction during COVID-19 pandemic: the strategy of best interest of our cancer patients.

D. Varvaras1*, R.A. Madaio2, V. De Felice1, S. Tardioli3, G. Papadopulos4, G. Trobbiani5, R.A. Madaio6, H. Nina7, T.M.J. Al Lawati8, H. Nina9, Ospedale Israelitico, Rome, Italy; 2Department of Oncology, A.O. Papardo, Messina, Italy; 3Department of Radiology, Villa Tiberia Hospital GVM Care & Research, Rome, Italy; 4Department of Surgery, Villa Tiberia Hospital GVM Care & Research, Rome, Italy; 5Department of Anesthesioloogy, Villa Tiberia Hospital GVM Care & Research, Rome, Italy; 6Department of Oncology, Ospedale Israelitico, Rome, Italy; 7Department of Surgical Oncology, University Mother Teresa, Tirana, Albania; 8Department of Surgery, Royal Hospital, Muscat, Oman

Goals: Pre-pectoral breast reconstruction, assuming the possibility to avoid the use of the pectoralis major muscle for implant coverage and performing a complete wrapping of the prosthesis with a sheet of biological meshes, in order to avoid the direct contact between the silicone implant and the host tissues and complications such as animation deformity, muscular impairment and migration of the prosthesis. This study aimsis to describe our case series with pre-pectoral implant placement and coverage of it with bovine pericardium-derived matrix named eXSHAPE®.

Methods: Ten women with breast tumors were selected and underwent mono- or bilateral mastectomies and prepectoral breast reconstruction. We used a particular sheet of bovine pericardium-derived biological meshes, especially designed for pre-pectoral implant placement. It covers the whole front surface and approximately 1/3 of the rear surface of the implant. This mesh allows a perfect and simple fit, with less matrix. This need of a new shape, was due to the fact that most of complications, such as seroma and infection, are related to the amount of biological mass used.